
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Minimizing CCTV Units Required with Graph
Coloring Using the Welsh-Powell Algorithm

Aliya Husna Fayyaza - 135230621,2
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

1aliyahfayyaza@gmail.com, 213523062@std.stei.itb.ac.id

Abstract— This paper explores an efficient approach to
minimizing the number of CCTV units required to monitor a set of
rooms by applying graph coloring principles through the Welsh-
Powell Algorithm. Rooms are represented as graph nodes, while
connections between rooms, indicating non-visible rooms from each
rooms, form the graph edges. The Welsh-Powell Algorithm is used to
assign colors (representing CCTV units) to nodes, ensuring that no
two connected nodes share the same color, thereby minimizing the
total units needed. The algorithm prioritizes nodes with higher
degrees, optimizing resource allocation. The adjacency list and
matrix representations are utilized for computational efficiency and
visual clarity.

Keywords— adjacency list, adjacency matrix, graph coloring,
optimization, Welsh-Powell algorithm.

I. INTRODUCTION

 CCTV is an essential tool for ensuring the safety and
security of buildings, from private homes to high-security
facilities like banks. The primary goal of placing CCTV is to
eliminate blind spots, ensuring that all areas are monitored.
However, achieving complete coverage can be costly due to the
high price of CCTV units and their associated operational
expenses. Therefore, it is important to find an efficient solution
to minimize the number of CCTVs required while maintaining
full surveillance coverage.
 This problem can be addressed mathematically by
modeling the surveillance area as a graph, where nodes represent
rooms or areas and edges represent shared visibility. The
minimum number of CCTVs required corresponds to the
chromatic number of the graph, which can be determined using
the Welsh-Powell algorithm. By prioritizing nodes with higher
connections and systematically assigning colors (representing
CCTVs), this algorithm ensures optimal placement and reduces
costs, providing an effective and structured solution for resource
allocation.

II. BASIC THEORY

A. Graph
 A graph G is defined by G = (V,E). V is a non-empty
set containing the vertices of graph G and E is a non-empty set
containing the edges that connect a pair of vertices. For a G to
be called graph, it should contains minimum one vertices and
one edge. The number of edges that a node is connected to is
called the degree. There are some kind of graph, the first one is
simple graph which does not contain loops or multiple edges.

Fig 1. Simple graph examples

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf)
The second one is un-simple graph, which contain loops.

Fig 2. Unsimple graph examples

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf)
This kind of graph is divided into two category, multi-graph
which contains multi edges and pseudo-graph which does not.

Fig 3. Unsimple graph categories

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf)
 Next, graphs are also divided based on the direction
orientation. The first one is undirected graph, meaning that the
edges does not have directions. The second one is directed graph
or digraph, means that every edges has a direction symbolized
by an arrow pointing to the desired direction.

Fig 4. Directed graph example

mailto:1author@gmail.com
mailto:author@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf)
 Graph has a lot application in real life, such as in
electrical circuits, isomers of carbon chemical compounds, food
chain representation, program testing, vending machine
modelling, intercity railway network, social network, computer
network, and many more.

B. Graph Adjacency
 Two vertices is called adjacent is when there is an
edge that connect the two vertices directly connected directly.
For example,

Fig 4. Graph example

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf)

node 1 is adjacent with node 2 and 3 and node 1 is not adjacent
with node 4.

C. Graph's Adjacency Visualization
 One method to represent the connections in a graph is
called an adjacency matrix. The matrix is formed by the rule
shown below.

Fig 4. Adjacency matrix rule

(source: author's archive)

 For example, the graph at the top could be represented
as the matrix below it.

Fig 5. Adjacency matrix examples

(source:
https://mathworld.wolfram.com/AdjacencyMatrix.html)

 For undirected graphs, the matrix will be symmetrical
because the edges are considered goes both way. For directed
graphs, the matrix may be not symmetrical depending on the
direction of the edges and for multiple edges, corresponding
matrix element will be valued based on the number of multiple
edges.

Fig 6. Adjacency matrix example for directed graph

(source: https://graphicmaths.com/computer-science/graph-
theory/adjacency-matrices/)

 Another visualization that could be used is adjacency
list. Each index of the list represents the vertices of the graph.
Then, each index will be connected to another list that contains
the vertices that it is adjacent with. For example, the graph at the
left could be represented as the list at the right.

Fig 7. Adjacency list example

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/21-Graf-Bagian2-2024.pdf)
D. Graph Vertices Coloring

 Graph Vertex Coloring is a concept in graph theory
where the vertices (nodes) of a graph are assigned colors such
that no two adjacent vertices (vertices connected by an edge)
share the same color. The primary goal of vertex coloring is to
minimize the number of colors used while satisfying this
condition. This minimum number of colors is called the
chromatic number.

Fig 8. Colored graph example

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/22-Graf-Bagian3-2024.pdf)
 An empty graph (a graph which no vertices is
connected) has the chromatic number one, a complete graph
(every vertices is connected with every other vertices) has the
chromatic number is same as the number of vertices in the graph.
A bipartite graph (the vertices can be divided into two disjoint
sets). A circular graph with odd number of vertices will have 3

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

as the chromatic number and even number of vertices will have
2 as the chromatic number. For other graph, the chromatic
number could not be generalized thus needed an algorithm to
solve the chromatic number.
 Graph coloring has numerous practical applications in
various fields. In scheduling problems, it is used to allocate
resources such as time slots or classrooms, ensuring no conflicts
occur. In frequency assignment for telecommunications, it helps
assign frequencies to cell towers while minimizing interference.
Graph coloring is also applied in register allocation in compilers,
where variables are assigned to registers without conflicts. In
networking, it is used to optimize channel assignments and
reduce data collisions.

E. Welsh-Powell Algorithm
 The Welsh-Powell Algorithm is a method used for
graph vertex coloring, aiming to assign colors to vertices such
that no two adjacent vertices share the same color. The
implement this algorithm begin by calculating the degree of
each vertex in the graph. Next, arrange the vertices in
descending order based on their degrees, from the highest to the
lowest. Start by assigning the first color to the vertex with the
highest degree in the sorted order. Then, move to the next vertex
in the list and assign the same color if it is not adjacent to any
previously colored vertex.
 Repeat this process for all remaining vertices,
introduce a new color whenever a vertex cannot be colored with
an existing one. Continue following this procedure until all
vertices are colored, starting with the next highest degree vertex
each time.

E. Isomorphic Graphs
 A graph can exist in different visual forms but still have

the same number of vertices and edges, with the edges
maintaining the same connectivity and the vertices maintaining
the same adjacency. If there are two graphs that follow this rule,
then those two graphs are said to be isomorphic. In other words,
isomorphic graphs are structurally identical, even if their layouts
or visual representations differ. For example, this is two graph
that are isomorphic.

Fig 9. Isomorphic graphs example

(source:
https://math.stackexchange.com/questions/2041534/are-two-

graph-isomorphic)
 Let the graph in the left be G1 and the graph in the right

be G2. All edges in G1 have their resemblance that has the same
connectivity. To prove this, here is the breakdown of every edge
in G1. Node A is connected to node B that has the degree of 2,
to node C that has the degree of 2, and to node D that has the
degree of 3. This is similar to node 7 of G2 that also is connected

to 2 vertices with the degree of 2 (node 3 and 4) and 1 node with
the degree of 3 (node 6). Node B in G1 is connected to node A
that has the degree of 3 and to node D that has the degree of 3.
This is similar to node 3 in G2 that is connected to node 7 with
the degree of 3 and node 6 with the degree of 3. Node C in G1
is connected to node A with the degree of 3, to node D with the
degree of 3, and to node F with the degree of 2. This is similar
to node 4 in G2 that is connected to node 7 with the degree of 3,
to node 6 with the degree of 3, and to node 5 with the degree of
2. Node D in G1 is connected to node A with the degree of 3, to
node B with the degree of 2, to node C with the degree of 2, and
to node E with the degree of 2. This is similar to node 6 in G2
that is connected to node 7 with the degree of 3, to node 3 with
the degree of 2, to node 4 with the degree of 2, and to node 2
with the degree of 2.

 Node E in G1 is connected to node D with the degree
of 3 and to node G with the degree of 2. This is similar to node
2 in G2 that is connected to node 6 with the degree of 3 and to
node 1 with the degree of 2. Node F in G1 is connected to node
C with the degree of 2 and to node G with the degree of 2. This
is similar to node 5 in G2 that is connected to node 4 with the
degree of 2 and node 1 with the degree of 2. Finally, node G in
G1 is connected to node F with the degree of 2 and to node E
with the degree of 2. This is similar to node 1 in G2 that is
connected to node 5 with the degree of 2 and node 2 with the
degree of 2.

 Thus, all vertices and edges in G1 have a corresponding
match in G2 with the same degree and connectivity, proving that
G1 and G2 are isomorphic.

III. IMPLEMENTATION

 In this implementation, several libraries are used to
facilitate the functionality of the program:

1. numpy: widely used for numerical computations. In
the implementation of this paper, it is used to initiate
adjacency matrices, which are crucial for representing
graph relationships in a mathematical format.

2. pandas: used for data manipulation and analysis. In
the implementation of this paper, it is used to handle
tabular data and convert adjacency matrices into a
more structured format for easier processing or
visualization.

3. networkx: specializes in the creation, manipulation,
and analysis of graph. It provides tools to represent
graphs as nodes and edges, perform graph algorithms,
and visualize networks. It is especially useful for
working with graph data structures like adjacency
matrices and lists. In the implementation of this paper,
it is used to visualizing the colored graph.

4. matplotlib.pyplot: used for data visualization in
Python. In the implementation of this paper, it is used
to visually represent the graph by plotting nodes and
edges, making it easier to understand the graph's
structure.

 These libraries work together to manage data, perform
computations, and visualize the results, making the
implementation more efficient and easier to understand.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

A. Representing Problems As Graph
 The program will take an adjacency list that consists of
the positions covered by the CCTV. For example, "Room A":
["Room C"] means that Room C is the only room that could not
be seen from Room A. This adjacency list will be converted into
an adjacency matrix for easier visualization. This conversion is
done by the function create_adjacency_matrix_from_list.
Within this function, the nodes (representing rooms) are first
extracted from the keys of the adjacency list, and the total
number of nodes is determined. A square matrix of size n × n,
filled with zeros using np.zeros. A dictionary node_index is also
created to map each node to its corresponding index in the
matrix. The function then iterates through the adjacency list,
updating the matrix so that matrix[i][j] is set to 1 if there is a
connection between node i and node j. The matrix is symmetric
since the connections between nodes does not contain
directions. Finally, the adjacency matrix and the list of nodes are
returned.

Fig 10. create_adjecency_matrix_from_list function part 1

(source: author's source code)
 Then, the adjacency matrix is converted back into a
graph structure. This process involves creating a dictionary
where each node is initialized with an empty list to store its
neighbors. The program iterates through each pair of nodes in
the adjacency matrix, and if adj_matrix[i][j] equals to 1, it
appends the second node as a neighbor of the first node. This
reconstructed graph allows further operations to be performed
using the adjacency relationships, maintaining the connectivity
defined in the matrix.

Fig 11. create_adjecency_matrix_from_list function part 2

(source: author's source code)

B. Welsh-Powell Algorithm for Graph Coloring
 The main algorithm, Welsh-Powell Algorithm is done
to the graph that has already been made in the function
welsh_powell. This algorithm starts by sorting the nodes of the
graph in descending order based on their degree (the number of
edges connected to a node). The sorting is performed using
sorted(graph.keys(), key=lambda x: len(graph[x]),
reverse=True), where the nodes with the highest degrees are
processed first. This method ensures that nodes with more
neighbors are prioritized, which helps in minimizing the number
of colors needed for the entire graph. During this step, an empty

dictionary colors is initialized to store the assigned colors for
each node, and a list available_colors is created to keep track of
the colors already introduced during the process.
 This function's output is a dictionary made of the node
and the corresponding color needed. After sorting the nodes, the
algorithm iterates through each node to determine the
appropriate color to assign. For each node, it identifies the colors
already used by its neighboring nodes using the line used_colors
= {colors[neighbor] for neighbor in graph[node] if neighbor in
colors}. Then, it checks if any of the colors in available_colors
are not in used_colors. If such a color exists, it assigns that color
to the current node using colors[node] = color. If no color is
available, the algorithm introduces a new color by incrementing
the count of available_colors and assigning it to the node, as
shown in new_color = len(available_colors) + 1 and
available_colors.append(new_color). This process ensures that
no two adjacent nodes share the same color, resulting in a valid
graph coloring. This function's output is a dictionary made of
the node and the corresponding color needed.

Fig 12. welsh_powell function
source: author's source code)

C. Chromatic Number Determination

 The minimum number of CCTV needed is determined
by the chromatic number of the graph, which will be discovered
by extracting the values in the colors dictionary produced in the
welsh_powell function and taking the maximum color, or in this
case number (to ease the process, colors are represented by
integers).

Fig 13. Chromatic number determining code

(source: author's source code)

D. Colored Graph Visualization
 To generate a visual representation of a graph with
nodes colored according to a given coloring scheme (from the
Welsh-Powell method result), the visualize_colored_graph
function is used. It starts by initializing an empty graph G using
networkx.Graph(). The function then iterates through the graph,
adding each node to G with the assigned color specified in the
colors dictionary and creating edges between the node and its
neighbors.
 After building the graph structure, the function extracts
the colors of all nodes into a list called node_colors, which will
later be used for visualization. The visualization begins by
defining the figure size using plt.figure(figsize=(12, 8)) and
calculating the layout of the graph using nx.spring_layout(G).
The graph is then drawn using nx.draw(), with parameters to
include node labels, assign colors to nodes based on
node_colors, A colormap plt.cm.Set3 is applied to differentiate

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

node colors. Finally, the graph is titled "Colored Room Graph"
using plt.title() and displayed with plt.show().

Fig 14. visualize_colored_graph
(source: author's source code)

IV. TESTING
 Author tested the input,

Fig 15. Input testing 1

(source: author's source code)
which indicates a room as the node and the rooms that could not
be seen from the node room as the adjacent nodes. The result
contains the adjacency matrix, the color for every room, the
minimum number of CCTV needed, and the graph
representation.

Fig 16. Result for testing 1

(source: author's source code)

Fig 17. Graph visualization for testing 1

(source: author's source code)
 Needed to be highlighted that the color assigned to
every rooms and the shape of the graph could be different for

every runtime but the chromatic number will always be the
same. The graphs got for every time the program run will be
isomorphic to each other. The node for the same room will be
the resemblance. For example, here is another graph that is
visualized in the next runtime,

Fig 18. Isomorphic graphs for testing I result

(source: author's source code)
These isomorphic graphs displayed the possibility of the layout
of the rooms and the edges shows the rooms that could not be
viewed from the room.
 If given that we can see every room from any room, the
number of CCTV will only be one and could be placed in any
room and will still cover all of the other room. Author tested this
scenario by using the test case,

Fig 19. Input testing 2

(source: author's source code)

Fig 20. Result for testing 2

(source: author's source code)

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

meaning that there is no room that could not be seen from any
available room.

Fig 21. Graph visualization for testing 2

(source: author's source code)

 This is reciprocal with the theory stated before, an

empty graph (no vertices is connected) has the chromatic
number one.

 If given that we can not see any other room from any
room, or in another word, all rooms are completely separated
from each other, the number of CCTV will be same as the
number of room available because one CCTV will only be
covering one room. Author tested this scenario by using the test
case,

Fig 22. Input testing 3

(source: author's source code)

Fig 23. Result for testing 3

(source: author's source code)

Fig 24. Graph visualization for testing 3

(source: author's source code)

 This is reciprocal with the theory stated before, a

complete graph (every node is connected to other vertices) has
the chromatic number is same as the number of vertices in the
graph

 By using the Welsh-Powell algorithm, the program
calculates the minimum number of CCTV units required,
effectively reducing unnecessary expenses on additional
equipment. This is particularly beneficial in large-scale
applications, such as office buildings, shopping malls, or
industrial complexes, where maximizing cost efficiency without
compromising security is critical. The program's ability to
model surveillance areas as graphs and optimize CCTV
placement makes it a valuable tool for planners and security
professionals seeking to balance coverage and budget
constraints.

V. CONCLUSION

 The application of the Welsh-Powell algorithm for
optimizing CCTV placement demonstrates an efficient approach
to minimizing surveillance costs while ensuring complete area
coverage. By modeling the surveillance area as a graph, with
rooms represented as nodes and visibility overlaps as edges, the
program effectively calculates the minimum number of CCTVs
required. The algorithm guarantees that no two adjacent nodes
share the same color, aligning with graph coloring principles to
determine the chromatic number.
 Through various test cases, the program validated
theoretical scenarios, such as an empty graph requiring only one
CCTV and a complete graph requiring the same number of
CCTVs as rooms. This prove the accuracy of the algorithm in
handling diverse scenarios. The system’s scalability and ability
to provide cost-effective solutions make it particularly valuable
for large-scale applications, such as office buildings and
industrial facilities. The approach not only optimizes resource
allocation but also highlights the practical utility of graph theory
in solving real-world problems.

VI. APPENDIX
Github: https://github.com/aliyahusnaf/MatdisPaper2024.git
Bonus video: https://youtu.be/0PxppeJFyKE

VII. ACKNOWLEDGMENT

 Author expresses gratitude to God Almighty for Hi
blessings and grace, which have provided the strength to write
this paper titled "Minimizing CCTV Units Required with Graph
Coloring Using the Welsh-Powell Algorithm" successfully. The
author would also like to extend heartfelt thanks to Ir. Rila
Mandala, M.Sc., Ph.D, the lecturer of the Discrete Mathematics
course for the Odd Semester of 2023/2024, Class 02, for
imparting valuable knowledge that served as a foundation for
this paper. The author also wishes to thank all the reference
sources utilized in the preparation of this paper. Lastly, the
author sincerely apologizes for any errors that may be present in
this paper.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

REFERENCES
[1] Munir, Rinaldi. 2023. "Graf (Bag. 1)".

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf. Accessed 21 December 2024, 8:30 AM.

[2] Munir, Rinaldi. 2023. "Graf (Bag. 2)".
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf. Accessed 21 December 2024, 8:30 AM. Accessed
21 December 2024, 9:30 AM.

[3] Munir, Rinaldi. 2023. "Graf (Bag. 3)".
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-
Graf-Bagian3-2024.pdf. Accessed 21 December 2024, 8:30 AM. Accessed
21 December 2024, 11:30 AM.

[4] Mayank, Mohit. 2021. "Visualisizing Networks in Python).
https://towardsdatascience.com/visualizing-networks-in-python-
d70f4cbeb259. Accessed 21 December 2024, 4:30 PM.

[5] McBride, Martin. 2023. "Adjacency matrices". source:
https://graphicmaths.com/computer-science/graph-theory/adjacency-
matrices/. Accessed 21 December 2024, 7:30 PM.

[6] Grohe, Martin. 2020. "The Graph Isomorphism Problem". source:
https://cacm.acm.org/research/the-graph-isomorphism-problem/.
Accessed 21 December 2024, 10:30 PM.

[7] Sauras, Altuzarra, Lorenzo and Weisstein, W., Eric. 2025. "Adjacency
Matrix". source: https://mathworld.wolfram.com/AdjacencyMatrix.html.
Accessed 4 January 2025, 09:30 AM.

PERSONAL STATMENT
I hereby declare that the paper I have written is my own work,
not an adaptation or translation of someone else's paper, and
not plagiarism.

Bandung, December 27 2024

Aliya Husna Fayyaza/13523062

